HPLC

Posted by DPC LI-BAPAN LAMPUNG UTARA 0 komentar


BAB I
PENDAHULUAN
1.1. Latar Belakang
Kimia analitik adalah cabang ilmu kimia yang berfokus pada analisis material untuk mengetahui komposisi, struktur, dan fungsi kimiawinya. Secara tradisional, kimia analitik dibagi menjadi dua jenis, kualitatif dan kuantitatif. Analisis kualitatif bertujuan untuk mengetahui keberadaan suatu unsur atau senyawa kimia, baik organik maupun anorganik, sedangkan analisis kuantitatif bertujuan untuk mengetahui jumlah suatu unsur atau senyawa dalam suatu cuplikan.
Kimia analitik modern dikategorisasikan melalui dua pendekatan, target dan metode. Berdasarkan targetnya, kimia analitik dapat dibagi menjadi kimia bioanalitik, analisis material, analisis kimia, analisis lingkungan, dan forensik. Berdasarkan metodenya, kimia analitik dapat dibagi menjadi spektroskopi, spektrometri massa, kromatografi dan elektroforesis, kristalografi, mikroskopi, dan elektrokimia.
Kromatografi Cair Kinerja Tinggi atau KCKT atau biasa juga disebut dengan HPLC (Hight Performance Liquid Chromatograhy ) dikembangkan pada akhir tahun 1960-an dan awal tahun 1970-an. Saat ini KCKT merupakan tekhnik pemisahan yang diterima secara luas untuk analisis dan pemurnian senyawa tertentu dalam suatu sampel dalam sebidang, antara lain : farmasi, lingkungan, bioteknologi, polimer dan industri-industri makanan. Beberapa perkembangan KCKT terbaru antra lain : miniaturisasi`sistem KCKT, penggunaan KCKT untuk analisis asam-asam nukleat, analisis protein, analisis karbohidrat dan analisisi senyawa-senyawa kiral.
Kromatografi cair kinerja tinggi (HPLC, High Performance Liquid Chromatography) merupakan suatu tekhnis analisis obat yang paling cepat berkembang. Cara ini ideal untuk analisis beragam obat dalam sediaan dan cairan biologi, karena sederhana dan kepekaannya tinggi.
            KCKT paling sering digunakan untuk menetapkan kadar senyawa-senyawa tertentu seperti asam-asam amino, asam-asam nukleat, dan protein-protein dalam cairan fisiologis; menentukan kadar senyawa-senyawa aktif obat, produk hasil samping proses sintetis, atau produk-produk degradasi dalam sediaan farmasi; memonitor sampel-sampel yang berasal dari lingkungan ; memurnikan senyawa-senyawa dalam suatu campuran ; memisahkan polimer dan menentukan distribusi berat molekulnya dalam suatu campuran; kontrol kualitas dan mengikuti jalannya reaksi sintetis.

            Keterbatasan metode KCKT adalah untuk identifikasi senyawa, kecuali jika KCKT dihubungkan dengan spektrometer massa (MS). Keterbatasan lainnya adalah jika sampelnya sangat kompleks, maka resolusi yang baik sulit diperoleh.
Kromatografi merupakan suatu cara pemisahan fisik dengan unsur-unsur yang akan dipisahkan terdistribusikan antara dua fasa, satu dari fasa- fasa ini membentuk suatu lapisan stasioner dengan luas permukaan yang besar dan yang lainnya merupakan cairan yang merembes lewat atau melalui lapisan yang stasioner. Fasa stasioner/diam dapat berupa zat padat atau suatu cairan, dan fasa gerak dapat berbentuk cairan ataupun gas. Maka semua jenis kromatografi yang dikenal, terbagi menjadi empat golongan: cair-padat,gas-padat, cair-cair, dan gas-cair (Day dan Underwood, 2002). Fase diam akan menahan komponen campuran sedangkan fase gerak akan melarutkan zat komponen campuran. Komponen yang mudah tertahan pada fase diam akan tertinggal. Sedangkan komponen yang mudah larut dalam fase gerak akan bergerak lebih cepat. Sekarang ini, kromatografi sangat diperlukan dalam memisahkan suatu campuran senyawa.
Berbagai usaha telah dilakukan untuk menambah laju aliran tanpa mengubah tinggi piringan teoritis kolom. Penurunan ukuran partikel penunjang stasioner tidak selalu menguntungkan. Kromatografi cair kinerja tinggi atau high performance liquid chromatography (HPLC) berbeda dari kromatografi cair klasik. HPLC menggunakan kolom dengan diameter umumnya kecil, 2-8 mm dengan ukuran partikel penunjang 50 nm; sedangkan laju aliran dipertinggi dengan tekanan yang tinggi (Khopkar, 2003).
HPLC didefinisikan sebagai kromatografi cair yang dilakukan dengan memakai fase diam yang terikat secara kimia pada penyangga halus yang distribusi ukuranya sempit ( kolom ) dan fase gerak yang dipaksa mengalir dengan laju alir yang terkendali dengan memakai tekanan tinggi sehingga menghasilkan pemisahan dengan resolusi tinggi dan waktu yang relative singkat. HPLC atau KCKT merupakan teknik pemisahan yang diterima secara luas untuk analisis dan pemurnian senyawa tertentu dalam suatu sampel pada sejumlah bidang, antara lain : farmasi; lingkungan; bioteknologi; polimer; dan industri- industri makanan.

1.2 Tujuan
Tujuan dari pembuatan makalah ini adalah :
1. Untuk mengetahui komponen utama dari HPLC.
2. Untuk mengetahui prinsip kerja dan penerapan dari HPLC.
3. Untuk mengetahui kelebihan dan kekurangan metode analisis dengan HPLC.
4. Untuk mengetahui penerapan HPLC dalam analisis senyawa (obat) dalam campuran

1.3 Rumusan Masalah
1. Bagaimana penerapan HPLC dalam analisis senyawa (obat) dalam campuran?










BAB II
TINJAUAN PUSTAKA

2.1 Perkembangan Kromatografi
Kromatografi pada hakekatnya merupakan metode pemisahan dimana komponen yang akan dipisahkan terdistribusi diantara dua fase yang saling tidak bercampur yaitu fasa diam dan fasa gerak. Kromatografi juga didefinisikan sebagai proses pemisahan zat terlarut oleh suatu proses migrasi diffferensial dinamis dalam sistem yang terdiri dari dua fase atau lebih, salah satu diantaranya bergerak secara berkesinambungan dalam arah tertentu dan didalamnya zat-zat itu menunjukkan adanya perbedaan dalam adsorpsi, partisi, kelarutan tekanan uap, ukuran molekul atau kerapatan tekanan uapnya (Bahti, 1998).
Istilah kromatografi diciptakan oleh Tswett untuk melukiskan daerah-daerah yang berwarna yang bergerak kebawah kolom. Pada waktu yang hampir bersamaan, D.T. Day juga menggunakan kromatografi untuk memisahkan fraksi-fraksi petroleum, namun Tswett lah yang pertama diakui sebagai penemu dan yang menjelaskan tentang proses kromatografi. Penyelidikan tentang kromatografi kendor untuk beberapa tahun sampai digunakan suatu teknik dalam bentuk kromatografi padatan cair (LSC).
Kemudian pada akhir tahun 1930 an dan permulaan tahun 1940 an, kromatografi mulai berkembang. Dasar kromatografi lapisan tipis (TLC) diletakkan pada tahun 1938 oleh Izmailov dan Schreiber, dan kemudian diperhalus oleh Stahl pada tahun 1958. Hasil karya yang baik sekali dari Martin dan Synge pada tahun 1941 (untuk ini mereka memenangkan Nobel) tidak hanya mengubah dengan cepat kromatografi cair tetapi seperangkat umum langkah untuk pengembangan kromatografi gas dan kromatografi kertas. Pada tahun 1952 Martin dan James mempublikasikan makalah pertama mengenai kromatografi gas. Diantara tahun 1952 dan akhir tahun 1960 an kromatografi gas dikembangkan menjadi suatu teknik analisis yang canggih (Sudjadi, 1986).
Kromatografi cair kolom klasik merupakan prosedur pemisahan yang sudah mapan dimana fase cair yang mengalir perlahan-lahan melewati kolom akibat gaya gravitasi dan terjadi proses pemisahan di kolom tersebut. Metode itu dicirikan dengan efisiensi kolom yang rendah dan waktu pemisahan yang lama. Namun sejak kira-kira tahun 1969, perhatian dalam teknik kolom cair kembali dilirik dengan dikembangkannya sistem kolom bertekanan tinggi oleh Kirchland dan Huber, yang mampu bekerja pada tekanan sampai 2,07 x 107 Nm-2 (3000p.s.i). Dalam metode ini digunakan kolom berdiameter kecil (1-3 mm) dengan partikel pendukung berukuran sekitar 30 nm dan eluen dipompakan ke dalamnya dengan laju alir yang tinggi (sekitar 1-5 cm3m-1). Pemisahan dengan metode ini dilakukan jauh lebih cepat (sekitar 100 kali lebih cepat) daripada dengan kromatografi cair yang biasa (Bassett et. all., 1994).
Kromatografi cair, dalam praktek ditampilkan dalam kolom gelas berdiameter besar, pada dasamya dibawah kondisi atmosfer. Waktu analisis lama dan segala prosedur biasanya sangat membosankan. Pada akhir tahun 1960 an, semakin banyak usaha dilakukan untuk pengembangan kromatografi cair sebagai suatu teknik mengimbangi kromatografi gas. High Performance Liquid Chromatography (HPLC) atau Kromatografi Cair Penampilan Tinggi atau High Preformance = Tekanan atau Kinerja Tinggi, High Speed= Kecepatan Tinggi dan Modern = moderen) telah berhasil dikembangkan dari usaha ini. Kemajuan dalam keduanya instrumentasi dan pengepakan kolom terjadi dengan cepatnya sehingga sulit untuk mempertahankan suatu bentuk hasil keahlian membuat instrumentasi dan pengepakan kolom dalam keadaan tertentu. Tentu saja, saat ini dengan teknik yangsudah matang dan dengan cepat HPLC mencapai suatu keadaan yang sederajat dengan kromatografi gas (Putra, 2004).
Umumnya metode kromatografi seperti adsorpsi, partisi, dan penukar ion adalah contoh-contoh dari kromatografi kolom. Pada metode kromatografi cair ini digunakan kolom tabung gelas dengan bermacam diameter. Partikel dengan dimensi yang bervariasi digunakan sebagai penunjang stasioner. Banyaknya cairan pada kolom jumlahnya sedemikian rupa sehingga hanya cukup menghasilkan sedikit tekanan untuk memelihara aliran fase gerak yang seragam. Secara keseluruhan pemisahan ini memakan waktu lama. Berbagai usaha telah dilakukan untuk menambah laju aliran tanpa mengubah tinggi piringan teoritis kolom. Penurunan ukuran partikel penunjang stasioner tidak selalu menguntungkan. Kromatografi cair kinerja tinggi atau high performance liquid chromatography (HPLC) berbeda dari kromatografi cair klasik. HPLC menggunakan kolom dengan diameter umumnya kecil, 2-8 mm dengan ukuran partikel penunjang 50 nm; sedangkan laju aliran dipertinggi dengan tekanan yang tinggi (Khopkar, 2003).
HPLC telah digunakan di Indonesia sejak tahun 1997 oleh Wiadnyana dalam penelitiannya yang bertema menguji dan menentukan kadar toksisitas berbagai macam fitoplankton di perairan laut. Selain digunakan untuk uji toksisitas, dalam bidang Biokimia HPLC kerap digunakan untuk menghitung kadar vitamin dan protein dari suatu makanan atau sampel. Singkatnya, HPLC merupakan sebuah metode analisa modern yang multifungsi dan sudah ada di Negara kita Indonesia. Oleh karena itu ijinkan penulis untuk bercerita sedikit tentang High Perfomance Liquid Chromatography.
2.2 Teknik Pemisahan dengan HPLC
Tehnik pemisahan dalam kromatografi melibatkan dua fasa, yakni fasa diam yaitu padat atau cairan yang terikat pada padatan pendukung, dan fasa gerak yang berupa gas dan cair. Proses pemisahan dalam kromatografi di dasarkan pada perbedaan laju migrasi masing- masing komponen dalam sistem kromatografi. Perbedaan laju migrasi dari masing-masing komponen merupakan akibat dari perbedaan keseimbangan distribusi masing-masing komponen diantara fasa gerak dan fasa diam. Metode kromatografi dibedakan dalam beberapa macam, berdasar pada fasa gerak, fasa diam, mekanisme, dan tehnik yang digunakan dan salah satu diantaranya adalah Kromatografi Cair Kinerja Tinggi (HPLC).
Dalam kromatografi cair Kinerja tinggi ini fasa gerak yang digunakan berupa cairan, sedangkan fasa diamnya berupa padatan (silica gel) yang ditempatkan pada kolom tertutup (melekat secara kimia dalam kolom tersebut). Maksud dan tujuan analisis dengan kromatografi yaitu didapatnya pemisahan yang baik demikian halnya dalam HPLC diharapkan pemisahannya baik dan dalam waktu proses yang relative singkat. Untuk mencapai Tujuan analisis ini, maka dipilih pelarut pengembang yang sesuai dengan komponen yang dipisahkan, kolom yang digunakan juga harus diperhatikan, dan detector yang memadai.
Parameter baik atau tidaknya suatu kromatografi didasarkan pada lima factor, yaitu waktu retensi, faktor kapasitas, efisiensi kolom, resolusi, dan factor ikutan.
a.       Waktu retensi didefinisikan sebagai waktu yang diperlukan untuk membawa keluar suatu komponen dari dalam kolom kromatografi sehingga yang keluar dari kolom adalah tepat konsentrasi maksimum.
b.      Faktor kapasitas (k’) juga merupakan ukuran retensi suatu komponen dalam kolom. Jika nilai k’ kecil, maka komponen tertahan sebentar dalam kolom. Dan jika nilai k’ yang lebih besar, maka pemisahan baik tetapi waktu yang dibutuhkan untuk analisis lebih lama dan dan puncaknya melebar. Sehingga ditentukanlah nilai k’ optimum, yaitu antara 1 sampai 10. Kolom dinyatakan baik jika cukup selektif artinya mampu menahan berbagai komponen dengan kekuatan yang cukup berbeda. Agar terjadi pemisahan yang baik maka nilai selektivitas (α) harus lebih besar daripada 1., dimana semakin besar nilai α maka pemisahannya akan semakin baik. Nilai α dapat diubah-ubah dengan cara, mengubah fasa gerak (misal: memperbesar polaritas); mengubah fasa diam; mengubah temperature, karena pada umumnya kenaikan temperature akan memperkecil waktu retensi; dan mengubah bentuk komponen.
c.       Efisiensi kolom merupakan kemampuan kolom mengeluarkan hasil yang diinginkan dengan hasil yang memuaskan dan dalam waktu yang singkat.
d.      Keterpisahan antara dua puncak kromatogram dinyatakan dengan resolusi ‘R’ (ukuran besar kecilnya pemisahan). Jika nilai R ≥ 1,5 maka senyawa terpisah dengan baik.
e.       Sedangkan factor terikutan (Tf) merupakan ukuran kesimetrisan suatu puncak. Dengan catatan nilai Tf < 2,0.
Perkembangan HPLC berkembang dari asas proses pemisahan adsorpsi dan partisi ke arah yang lebih luas, yaitu proses pemisahan yang berasaskan afinitas. Filtrasi gel dan ion yang berpasangan., akan tetapi proses pemisahannya tetap dilaksanakan di dalam kolom disertai pemakaian pelarut pengembangdengan tekanan tinggi (Ahmad dan Suherman, 1995).
Teknik HPLC merupakan satu teknik kromatografi cair– cair yang dapat digunakan baik untuk keperluan pemisahan maupun analisis kuantitatif. Analisis kuantitatif dengan teknik HPLC didasarkan kepada pengukuran luas atau area puncak analit dalam kromatogram, dibandingkan dengan luas atau area larutan standar. Kegunaan umum HPLC adalah untuk pemisahan sejumlah senyawa organik, anorganik, maupun senyawa biologis ; analisis ketidakmurnian (impurities); analisis senyawa- senyawa mudah menguap (volatile); penentuan molekul- molekul netral, ionic, maupun zwitter ion; isolasi dan pemurnian senyawa; pemisahan senyawa-senyawa yang strukturnya hampir sama; pemisahan senyawa- senyawa dengan jumlah sekelumit (trace elements), dalam jumlah yang banyak, dan dalam skala proses industry.

2.3 Prinsip Kerja Dari KCKT
Adapun prinsip kerja dari KCKT adalah suatu tekhnik yang mana solut atau zat terlarut terpisah perbedaan kecepatan elusi, dikarenakan solut-solut ini melewati suatu kolom kromatografi. Pemisahan solut-solut ini diatur oleh distribusi solut dalam fase gerak dan fase diam.
2.4  Kegunaan KCKT
Kegunaan umum KCKT adalah untuk : pemisahan sejumlah senyawa organik, anorganik, maupun senyawa biologis ; analisis ketidakmurnian (impurities) ; analisis senyawa-senyawa tidak menguap (non-volatil) ; penentuan molekul-molekul netral, ionik, maupun zwitter ion ; isolasi dan pemurnian senyawa; pemisahan senyawa-senyawa yang strukturnya hampir sama; pemisahan senyawa-senyawa dalam jumlah sekelumit (trace element), dalam jumlah banyak dan dalam skala proses industri. KCKT merupakan metode yang tidak dekstruktif dan dapat digunakan baik untuk analisis kualitatif maupun kuantitatif.
2.5 Mekanisme Kerja KCKT
Penggunaan kromatografi cair membutuhkan penggabungan secara tepat dari berbagai macam kondisi operasional seperti jenis kolom, fase gerak, panjang dan diameter kolom, kecepataan alir fase gerak, suhu kolom, dan ukuran sampel.
Instrumen KCKT pada dasarnya tersiri atas delapaan komponen pokok yaitu :
1.      Wadah fase gerak
2.      Sistem penghantaran fase gerak
3.      Alat untuk memasukkan sampel
4.      Kolom
5.      Detektor
6.      Wadah penampung buangan fase gerak
7.      Tabung penghubung
8.      Suatu komputer atau integrator atau perekam
untitled.png
Gambar Rangkaian Instrumen HPLC

1.      Wadah fase gerak pada KCKT
Wadah fase gerak harus bersih dan lembam (inert). Wadah ini biasanya dapat menampung fase gerak antara 1 sampai 2 liter pelarut. Sebelum menggunakan fase gerak harus dilakukan degassing (penghilangan gas) yang ada pada fase gerak, sebab adanya gas akan berkumpul dengan komponen lain terutama di pompa dan detektor sehingga akan mengacaukan analisis. Pada saat membuat pelarut pada fase gerak maka sangat dianjurkan untuk menggunakan pelarut, bufer, dan reagen dengan kemurnian yang sangat tinggi xdan lebih terpilih lagi jika pelarut-pelarut yang akan digunakan untuk KCKT berderajat KCKT (HPLC grade).
2.      Fase Gerak
Fase gerak atau eluen biasanya terdiri dari campuran pelarut yang dapat bercampur yang secara keseluruhan berperan dalam daya elusi dan resolusi, yang ditentukan oleh polaritas keseluruhan pelarut, polaritas fase diam, dan sifat komponen-komponen sampel.
Deret eluotrofik yang disusun berdasarkan polaritas pelarut merupakan hal penting dalam pemilihan fase gerak.
Adapun ciri-ciri yang harus dimiliki oleh fase gerak pada KCKT, yaitu :
1) Kemurnian tinggi (high purity), yaitu cairan eluen yang tidak terkontaminasi.
2) Kestabilan tinggi, yaitu eluen yang tidak bereaksi dengan sampel atau zat yang berfungsi sebagai fase diam.
3) Kekentalan rendah, yaitu kerapatan eluen sekecil mungkin.
4) Dapat melarutkan sampel, tidak mengubah kolom dan sifat kolom serta cocok dengan detektor.

Beberapa deret eluotropik KCKT :
Pelarut
Parameter kekuatan pelarut (adsorbsi)
Parameter kekuatan pelarut (partisi)
UV cut off (nm)
n-heksana
0,01
0,1
195
Sikloheksana
0,04
-0,2
200
Tetraklorometan
0,18
1,6
265

Nilai pemenggalan UV merpakan panjang gelombang  yang mana pada kuvet 1 cm, pelarut akan memberi absorbasi lebih dari 1,0 satuan absorbansi. Sangat dianjurkan untuk menggunakan panjang gelombang deteksi yang tidak bertepatan atau di sekitar panjang gelombang pemenggalan UV pelarut yang digunakan sebagai fase gerak.
Fase gerak yang paling sering digunakan untuk pemisahan dengan fase terbalik adalah campuran larutan bufer dengan metanol atau campuran air dengan asetonitril.Untuk pemisahan dengan fase normal, fase gerak yang paling sering digunakan adalah campuran pelarut-pelarut hidrokarbon dengan pelarut yang terklorisasi atau menggunakan pelarut jenos alkohol.
3.      Pompa
Ada dua tipe pompa yang digunakan, yaitu pompa kinerja konstan (constant pressure) dan pompa pemindahan konstan (constant displacement). Pemindahan konstan dapat dibagi menjadi dua, yaitu: pompa reciprocating dan pompa syringe. Pompa reciprocating menghasilkan suatu aliran yang berdenyut teratur (pulsating), oleh karena itu membutuhkan peredam pulsa atau peredam elektronik untuk, menghasilkan garis dasar (base line) detektor yang stabil, bila detektor sensitif terhadapan aliran. Keuntungan utamanya ialah ukuran reservoir tidak terbatas. Pompa syringe memberikan aliran yang tidak berdenyut, tetapi reservoirnya terbatas.
Tujuannya adalah  untuk menjamin proses penghantaran fase gerak berlangsung secara tepat.Ada 2 jenis pompa KCKT yaitu : pompa dengan tekanan konstan dan pompa aliran fase gerak yang konstan sejauh ini lebih umum dibandingkan dengan tekanan konstan.
Syarat – syarat pompa yang ideal:
a. Mampu membangkitkan tekanan tinggi
b. Pulse free – out put
c. Control laju alir yang akurat
d. Tahan korosi
e. Terbuat dari bahan yang tahan terhadap fasa gerak
f. Bebas pulsa
g. Perlu“de gasser”
h. Dapat menyalurkan fasa gerak pada rentang kecepatan dan tekanan lebar
i. Dapat digunakan untuk melakukan elusi gradien
j. Bekerja pada tekanan sampai 6000 psi (400 atm)
Tiga jenis pompa yang sering digunakan dalam sistem KCKT yaitu :
1) Pompa Bolak-balik (reciprocating pump)
Jenis pompa yang paling banyak digunakan. Kelebihan pompa jenis ini adalah volume internalnya kecil sekitar 35 – 400 μl, tekanan hingga 10.000 psi, kemampuan untuk adaptasi menggunakan elusi gradien, aliran yang konstan sehingga terbebas dari tekanan balik kolom dan akibat dari kekentalan solven.
2) Pompa Sistem Penggantian (displacement pump)
Sistem penggantian menggunakan sebuah wadah besar seperti syringe dengan sebuah penekan yang digerakan oleh motor. Menghasilkan aliran yang bebas tekanan balik, tidak dipengaruhi kekentalan dan bebas denyut. Kekurangan pompa jenis ini adalah kapasitas pompa terbatas hanya 250 ml dan cukup sulit saat solven harus mengalami penggantian.
3) Pompa Tekanan Udara (pneumatic pump)
Bentuk paling sederhana sebuah pompa pneumatik merupakan wadah yang ditekan oleh gas bertekanan tinggi. Harga relatif murah dan bebas denyut merupakan kelebihan jenis pompa ini. Kekurangannya terletak pada kapasitas terbatas, tekanan keluaran terbatas hanya sekitar 2000 psi, dipengaruhi oleh tekanan balik dan kekentalan solven dan tidak dapat digunakan untuk sistem elusi gradien.


4.      Injektor (penyuntikan sampel)
Sampel-sampel cair dan larutan disuntikkan secara langsung kedalam fase gerak yang mengalir dibawah tekanan meuju kolom menggunakan alat penyuntik yang terbuat dari tembaga tahan karat dan katup teflon yang dilengkapi dengan keluk sampel (sample loop) internal atau eksternal. Injeksi sample seluruhnya otomatis dan anda tidak akan mengharapkan bagaimana mengetahui apa yang terjadi pada tingkat dasar. Karena proses ini meliputi tekanan, tidak sama halnya dengan kromatografi gas (jika anda telah mempelajarinya).

Pada saat pengisian, sampel digelontor melewati keluk sampel dan kelebihannya dikeluarkan ke pembuang. Pada saat penyuntikan katup diputar sehingga fase gerak mengalir melewati keluk sampel dan menggelontor sampel ke kolom. Presisi penyuntikkan dengan keluk sampel ini dapat mencapai nilai RSD 0,1 %. Penyuntikkan ini mudah digunakan untuk otomatisasi dan sering digunakan untuk autosampler pada KCKT.
Injektor merupakan tempat untuk memasukkkan sempel ke kolom. Waktu yang dibutuhkan oleh senyawa untuk bergerak melalui kolom menuju detektor disebut sebagaiwaktu retensi. Waktu retensi diukur berdasarkan waktu dimana sampel diinjeksikan sampai sampel menunjukkan ketinggian puncak yang maksimum dari senyawa itu. Senyawa-senyawa yang berbeda memiliki waktu retensi yang berbeda.
Untuk beberapa senyawa, waktu retensi akan sangat bervariasi dan bergantung pada: tekanan yang digunakan (karena itu akan berpengaruh pada laju alir dari pelarut) kondisi dari fase diam (tidak hanya terbuat dari material apa, tetapi juga pada ukuran partikel) komposisi yang tepat dari pelarut temperatur pada kolom 1. Elusi Gradien Elusi Gradien didefinisikan sebagai penambahan kekuatan fasa gerak selama analisis kromatografi berlangsung.
Efek dari Elusi Gradien adalah mempersingkat waktu retensi dari senyawa-senyawa yang tertahan kuat pada kolom. Dasar- dasar elusi gradien dijelaskan oleh Snyder. Elusi Gradien menawarkan beberapa keuntungan :
a. Total waktu analisis dapat direduksi
b. Resolusi persatuan waktu setiap senyawa dalam campuran bertambah
c. Ketajaman Peak bertambah (menghilangkan tailing)
d. Efek sensitivitas bertambah karena sedikit variasi pada peak
5. Kolom
Ada 2 jenis kolom pada KCKT yaitu kolom konvensional dan kolom mikrobor. Perbandingan kedua kolom dapat dilihat di bawah ini :
Parameter
Kolom konvensional
Kolom mikrobor
Tabung kolom
Stainless steel
Panjang 3,10,15,20 dan 25 cm
Diameter luar 0,25 inci
Diameter dalam 4,6 cm
Stainless steel
Panjang 25 dan 50 cm
Diameter luar 0,25 inci
Diameter dalam 1 atau 2 mm
Fase diam
Porous, silika ukuran kecil, silika yang dimodofikasi secara kimiawi (bonded phase), atau polimer-polimer stiren/divinil benzen.Rata-rata diameter partikel 3,5 atau 10µm dengan kisaran sempit.
Porous, silika ukuran kecil, silika yang dimodofikasi secara kimiawi (bonded phase), atau polimer-polimer stiren/divinil benzen.Rata-rata diameter partikel 3,5 atau 10µm dengan kisaran sempit.
Tekanan operasional
500-3000 psi
(35-215 bar
1000-5000 psi
(70-350 bar)
Fase gerak
Hidrokarbon+pelarut terklorinasi atau alkohol untuk fase normal. Untuk fase terbalik (reversed phase) digunakan metanol atau asetonitril + air atau bufer.Kecepatan alir : 1-3 ml/menit
Hidrokarbon+pelarut terklorinasi atau alkohol untuk fase normal. Untuk fase terbalik (reversed phase) digunakan metanol atau asetonitril + air atau bufer.Kecepatan alir 10-100 µl/menit.Modifikasi instrumen
Sistem penghantaran pelarut yang mampu memberikan kontrol aliran di bawah 10µl/menit.Katup injeksi sampekl bervolume kecil;sel detektor bervolume kecil.
Kinerja
Efisiensi meningkat dengan bekurannya ukuran partikel fase diam, akan tetapi umur kolom dengan ukuran partikel 3 µm lebih pendek.
Sangat efisiensi dan sensitif, akan tetapi lambat,konsumsi fase gerak hanya ¼ dari kolom konvensional.
Kolom mikrobor mempunyai 3 keuntungan yang utama dibandingkan dengan kolom konvensional, yakni :
1.      Konsumsi fase gerak mikrobor hanya 80% atau lebhi kecil dibandingkan dengan kolom konvensional karena pada kolom mikrobor kecepatan alir fase gerak lebih lambat (10-100 µl/menit)
2.      Adanya aliran fase gerak yang lebih lambat membuat kolom mikrobor lebih ideal jika digabung dengan spektrometer massa.
3.      Sensitivitas kolom mikrobor ditingkatkan karena solut lebih pekat, karenanya jenis kolom ini sangat bermanfaat jika jumlah sampel terbatas misal sampel klinis.
Kolom KCKT secara umum dibuat dari bahan tabung stainless steel, walaupun untuk tekanan di bawah 600 psi kolom kaca dapat digunakan. Kolom untuk analisis KCKT memiliki ukuran panjang kolom berkisar dari 10 – 30 cm berbentuk lurus dan jika diperlukan dapat disambung dengan kolom yang lain. Diameter dalam kolom 4 – 10 mm dengan ukuran partikel 5 – 10 μm. Kolom dari jenis ini mempunyai 40.000 hingga 60.000 lempeng/meternya.
Saat ini, pabrik pembuat kolom telah merancang dan memproduksi kolom dengan kecepatan dan kinerja tinggi. Beberapa kolom hanya memiliki panjang 1 hingga 4,6 cm dengan ukuran partikel 3 – 5 μm. Beberapa jenis kolom memiliki jumlah lempeng hingga 100.000 hanya dengan panjang 3 sampai 7,5 cm dengan kelebihan pada kecepatan dan sedikitnya solven yang diperlukan dalam pemisahan. Jumlah solven minimum menjadi pertimbangan penting karena mahalnya solven dengan tingkatan kromatografi (chromatography grade).
Dua jenis kolom digunakan dalam kromatografi cair yaitu jenis pellicular dan partikel berpori (porous particle). Jenis pellicular terdiri dari partikel dengan bentuk bola, tidak berpori berbahan dasar gelas atau polimer dengan diameter 30 hingga 40 μm. Lapisan tipis berpori silika, alumina, divinil benzen sintetis polystirena atau resin penukar ion dilapiskan pada permukaannya.
Jenis kolom dengan partikel berpori berisi partikel berpori dengan diameter partikel 3 – 10μm terbuat dari silika, alumina, resin sintetis divinil benzen polystirena atau resin penukar kation yang kemudian dilapisi lapisan tipis film berbahan organik sehingga berikatan secara kimia atau fisika terhadap permukaannya. (Skoog et al., 1998)

Meskipun demikian, dalam prakteknya, kolom mikrobor ini tidak setahan kolom konvensional dan kurang bermanfaat untuk analisis rutin.
Berbeda dengan kolom kromatografi klasik, kolom KCKT dapat digunakan kembali (reusable). Banyak analisis yang bisa dilakukan dengan kolom yang sama sebelum dari jenis sampel yang diinjeksi, kebersihan dari solven dan jenis solven yang digunakan. Kolom diisi dengan partikel padatan yang berukuran kecil dilapisi secara kimia oleh suatu cairan yang berfungsi sebagai fasa diam. Komponen-komponen sample dibawa oleh cairan fasa gerak yang dialirkan dengan bantuan tekanan tinggi melewati kolom fasa diam.
Komponen- komponen dipisahkan berdasarkan partisi antara fasa diam dan fasa gerak yang satu sama lain tidak bercampur. Efisiensi kolom salah satunya sangat tegantung dari besarnya partikel fase stasioner. Oleh karena itu bila ukuran fase stasioner lebih kecil, maka tinggi plat teoritik akan berkurang, sehingga jumlah plat teoritik akan bertambah, yang meningkatkan efisiensi kolom. Dengan kolom yang pendek dan efisiensi, pemisahan akan berjalan dengan cepat.
Terdapat banyak analisis yang dikerjakan pada suhu kamar, suhu kolom sering dapat diatur dengan konstan dengan memakai cara pemanasan. Sering dibutuhkan suhu kolom yang lebih tinggi dari suhu kamar untuk mengatasi masalah daya larut solute yang dianalisis dan viskositas fase gerak yang agak tinggi.
6. Fase diam
Kebanyakan fase diam pada KCKT berupa silika yang dimodifikasi secara kimiawi, silika yang tidak dimodifikasi atau polimer-polimer stiren dan divinil benzen.Permukaan silika adalah polar dan sedikit asam karena adanya residu gugus silanol (Si-OH).

Silika yang dimodifikasi secara kimiawi dengan menggunakan reagen-reagen yang akan bereaksi dengan gugus silanol dan menggantinya dengan gugus-gugus fungsional yang lain. Hasil reaksi yang diperoleh disebut dengan silika fase terikat yang stabil terhadap hidrolisis karena terbentuk ikatan-ikatan siloksan (Si-O-O-Si). Silika yang dimodifikasi ini mempu karekateristik kromatografi dan selektifitas yang berbeda jika dibandingkan dengan silika yang tidak dimodifikasi.

Oktadesil silika (ODS atau C18 )merupakan fase diam paling sering digunakan karena mampu memisahkan senyawa-senyawa denngan kepolaran yang rendah, sedang maupun tinggi.
Solut-solut yang polar, terutama yang bersofat basa akan mengekor (tailing peak) pada penggunaan fase diam silika fase terikat. Hal ini disebabkan oleh adanya interaksi adsorbsi antara solut-solut ini dengan residu silanol dan pengotor logam pada silika.Masalah ini dapat diatasi dengan end-chapping yakni proses menutupi residu silanol ini dengan gugus-gugus trimetilsilil dan menggunakan silika dengan menggunakan silika dengan kemurnian yang tinggi (kandungan logam <1ppm)

7.      Detektor KCKT
Detektor pada KCKT dikelompokkan dalam 2 golongan yaitu : detektor universal (yang mampu mendeteksi zat secara umum, tidak bersifat spesifik dan tidak bersifat selektif) seperti detektor indeks bias dan detektro spektrometri massa; dan golongan detektor yang spesifik yang hanya akan mendeteksi analit secara spesifik dan selektif seperti detektor UV-Vis, detektor Fluoresensi dan elektrokimia.

Detektor ideal pada sistem KCKT mempunyai persyaratan :
1) Memiliki sensitifitas yang memadai. Kisaran umum sensitifitas berkisar dari 10-8 hingga 10-15gram zat terlarut per pembacaan
2) Stabil dan memiliki keterulangan yang baik
3) Respon yang linear terhadap kenaikan konsentrasi
4) Waktu respon yang singkat
5) Kemudahan pada penggunaan
6) Memiliki volume internal yang kecil untuk mengurangi pelebaran puncak

Suatu detektor harus mempunyai karakteristik sebagai berikut :
1.      Mempunyai respon terhadap solut yang cepat dan reprodusibel
2.      Mempunyai sensitivitas yang tinggi, yakni mampu mendeteksi solut pada kadar yang sangat kecil.
3.      Stabil dalam pengoperasiannya
4.      Mempunyai sel volume yang kecil sehingga mampu meminimalkan pelebaran pita. Untuk kolom konvensional, selnya bervolume 8µl atau lebih kecil, sementara kolom mikrobor selnya bervolume 1 µl atau lebih kecil lagi.
5.      Signal yang dihasilkan berbanding lurus dengan konsentrasi solut pada kisaran yang luas (kisaran dinamis linier).
6.      Tidak peka terhadap perubahan suhu dan kecepatan alir fase gerak.
Beberapa jenis detektor yang digunakan pada sistem KCKT :
1) Detektor Absorban (UV-Vis)
Pada detektor absorban, aliran akan mengalir melalui detektor dari kolom kromatografi. Untuk meminimalkan pelebaran puncak, detektor dirancang dalam volume yang sekecil mungkin. Ukuran volume dibatasi 1 – 10 μl dengan panjang sel 2 – 10 mm. Umumnya sel detektor mampu menahan tekanan hingga 600 psi sehingga peralatan pengurang tekanan diperlukan sebelum aliran memasuki detektor.
2) Detektor Fluorescens
Detektor fluorescens yang digunakan sama halnya dengan detektor pada spektrofluoro-fotometer. Detektor paling sederhana menggunakan lampu merkuri sebagai sumber cahaya dan filter untuk mengisolasi panjang gelombang emisi radiasi. Lampu Xenon digunakan pada instrumen yang lebih baik dengan gratting sebagai monokromatornya.
3) Detektor Refraktif Indeks
Detektor jenis ini bekerja dengan mengukur nilai indeks bias yang senyawa yang melalui sel. Sel akan mengukur indeks bias solven fasa gerak sebagai blanko dan sampel secara bersamaan untuk mendapatkan nilai indeks bias relatif.
4) Detektor Elektrokimia
Detektor dengan mendasarkan kerjanya pada pengukuran arus listrik. Perubahan arus akan dideteksi terhadap waktu dan ditampakkan dalam bentuk kromatogram. Contoh penggunaan detektor adalah pada penetapan senyawa tiol dan disulfida.
5) Detektor Spektra Massa
Sejumlah fraksi kecil cairan dari kolom dimasukkan ke dalam spektrometer massa pada kecepatan alir 10 – 50 μl per menit atau menggunakan termospray. Analat akan diionisasikan, dipisahkan pada analisator, dibaca oleh detektor dan menghasilkan spektrum massa.

Ada beberapa cara untuk mendeteksi substansi yang telah melewati kolom. Metode umum yang mudah dipakai untuk menjelaskan yaitu penggunaan serapan ultra-violet.

Banyak senyawa-senyawa organik menyerap sinar UV dari beberapa panjang gelombang. Jika anda menyinarkan sinar UV pada larutan yang keluar melalui kolom dan sebuah detektor pada sisi yang berlawanan, anda akan mendapatkan pembacaan langsung berapa besar sinar yang diserap.
http://www.chem-is-try.org/wp-content/migrated_images/analisis/hplc2.gif
Jumlah cahaya yang diserap akan bergantung pada jumlah senyawa tertentu yang melewati melalui berkas pada waktu itu. Anda akan heran mengapa pelarut yang digunakan tidak mengabsorbsi sinar UV. Pelarut menyerapnya! Tetapi berbeda, senyawa-senyawa akan menyerap dengan sangat kuat bagian-bagian yang berbeda dari specktrum UV.
2.6 Jenis – Jenis Kromatografi Cair Kinerja Tinggi
a. Kromatografi adsorbsi
Kromatografi adsorbsi sangat cocok untuk pemisahan senyawa-senyawa yang bersifat agak polar. Partikel-partikel silika atau alumina biasanya digunakan sebagai adsorben. Jenis kromatografi ini menggunakan fasa gerak non polar seperti heksana dan disebut jugakromatografi fasa normal.
b. Kromatografi partisi
Kromatografi partisi sangat cocok untuk pemisahan senyawa-senyawa non polar. Jenis kromatografi ini disebut dengan kromatografi fasa terbalik karena fasa geraknya lebih polar daripada fasa diam. Salah satu kendala kromatografi ini adalah keterbatasan selektivitas sebagai ketidakcampuran kedua fasa. Karena keterbatasan ini maka kromatografi partisi tidak digunakan lagi sebagai teknik analisis rutin.
c. Kromatografi fasa terikat
Kromatografi fasa terikat merupakan teknik HPLC yang paling penting dan paling banyak digunakan saat ini. Dalam hal penerapann kromatografi fasa terikat dan kromatografi partisi memiliki persamaan. Akan tetapi, sorben fasa terbalik terdiri dari partikel silika yang dimodifikasi secara kimia dengan rantai alkil sebaliknya, fasa diam pada kromatografi partisi terdiri dari partikel yang dilapisi secara fisik dengan zat cair non polar.
Keuntungan kromatografi fasa terikat, yaitu :
1) Merupakan fasa yang stabil
2) Kepolaran fasa gerak dapat diubah selama proses pemisahan berlangsung bila kepolaran solut-solut bervariasi.
3) Kolom mempunyai umur panjang.
4) Memiliki keterulangan waktu retensi yang baik.
5) Lebih ekonomis.
d. Kromatogarfi penukar ion
Kromatografi penukar ion merupakan teknik pemisahan campuran ion-ion atau molekul-molekul yang dapat diionkan. Ion-ion bersaing dengan ion-ion fase gerak untuk memperebutkan tempat berikatan dengan fasa diam. Dasar pemisahan kromatografi ini berasal dari perbedaan afinitas senyawa bermuatan terhadap permukaan penukar ion.
e. Kromatografi ekslusi ukuran
Ukuran molekul merupakan kriteria utama dalam pemisahan dengan kromatografi ekslusi ukuran. Pemisahan terjadi karena solut-solut berdifusi masuk dan keluar pori-pori paking kolom. Molekul-molekul yang lebih besar dari diameter pori-pori akan melewati kolom secara cepat dan dikenal dengan istilah volume terekslusi begitu pula sebaliknya. Teknik ini berguna untuk mengkarakterisasi distribusi berat molekul polimer, pemurnian cuplikan biologis dan pemisahan senyawa-senyawa dengan berat molekul 2000 atau lebih
2.7  Ada 3 sistem KCKT yang dikenal, yaitu:
1. Sistem elusi isokratik (isocratic elution)
Sampel diinjeksikan ke dalam kolom yang komposisi fasa geraknya tidak berubah selama analisis dilakukan sampai sampel terelusi dari kolom, sistem isokratik yang memiliki nilai k’ (rasio atau koefisien partisi yang bervariasi) akan menghasilkan resolusi yang buruk dan sukar mendeteksi pita elusinya.
2. Sistem elusi gradient (gradient elution)
Ada perubahan fasa gerak baik secara bertahap atau berkesinambungan selama proses berlangsung. Pada mula-mula elusi, seluruh komponen sampel ditahan di bagian atas kolom, setelah gradien mulai, kekuatan elusi fase gerak akan meningkat. Pada akhirnya harga k’ akan menjadi cukup kecil sehingga komponen zat tersebut akan bermigrasi sepanjang kolom secara cepat sampai ia keluar dari kolom.
3. Sistem elusi bertahap
Baik digunakan untuk sampel yang mengandung komponen-komponen yang bergerak cepat, yang diikuti senyawa-senyawa yang lambat gerakannya, tetapi tidak mengandung senyawa dengan nilai k’ setelah sampai diinjeksikan. Komposisi fase gerak secara bertahap diganti.
Hasil sistem KCKT dan optimasinya sangat tergantung pada beberapa hal, antara lain :
a. Temperatur
b. Tekanan
c. Diameter partikel fase diam
d. Viskositas
e. Panjang kolom
Secara sistematik diagram alat HPLC dapat digambarkan sebagai berikut:
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEij0JC4pyqRF9G0ByCddInwVMnun9JKWQS7StmbDV379WNmG5QuSXSHU5_OwZCBGjpMyJfpX7rR8wlBtyD9etM7LriPXk3mqxudK4wq6dRnMroCf6nEQPtLJR8dOv-_WnpfqaErBMRWDFgG/s400/diagram+hplc.jpg.

2.8 Kelebihan Dan Kekurangan Metode Analisis Dengan HPLC
Kromatografi Cair Kinerja Tinggi (HPLC) atau High Pressure Liquid Chromatography (HPLC) merupakan salah satu metode kimia dan fisikokimia. HPLC termasuk metode analisis terbaru yaitu suatu teknik kromatografi dengan fasa gerak cairan dan fasa diam cairan atau padat. Banyak kelebihan metode ini jika dibandingkan dengan metode lainnya. Kelebihan itu antara lain:
a.       Mampu memisahkan molekul- molekul dari suatu campuran
b.      Mudah melaksanakannya
c.       Kecepatan analisis dan kepekaan yang tinggi
d.      Dapat dihindari terjadinya dekomposisi / kerusakan bahan yang dianalisis ü Resolusi yang baik
e.       Dapat digunakan bermacam- macam detektor
f.       Kolom dapat digunakan kembali
g.      Mudah melakukan "sample recovery". Mudah untuk mendapatkan kembali cuplikan, karena detector pada HPLC tidak merusak komponen zat yang dianalisis.
h.      Dapat menganalisis senyawa organik yang terurai (labil) pada suhu tinggi karena HPLC dilakukan pada suhu kamar.
i.         Dapat menganalisis cuplikan yang berasal dari senyawa-senyawa anorganik.
j.        Dapat menganalisis cuplikan yang memiliki berat molekul tinggi atau titik didihnya sangat tinggi seperti polimer
k.      Dapat memisahkan zat-zat yang tidak mudah menguap ataupun tak tahan panas
l.        Banyak pilihan fasa geraknya Cepat: Waktu analisis umumnya kurang dari 1 jam. Banyak analisis yang dapat diselesaikari sekitar 15-30 menit. Untuk analisis yang tidak rumit (uncomplicated), waktu analisi kurang dari 5 menit bisa dicapai
m.    Resolusi : Berbeda dengan KG, Kromatografi Cair mempunyai dua rasa dimana interaksi selektif dapat terjadi. Pada KG, gas yang mengalir sedikit berinteraksi dengan zat padat; pemisahan terutama dicapai hanya dengan rasa diam.
n.      Kemampuan zat padat berinteraksi secara selektif dengan rasa diam dan rasa gerak pada HPLC memberikan parameter tambahan untuk mencapai pemisahan yang diinginkan.
o.      Sensitivitas detektor : Detektor absorbsi UV yang biasa digunakan dalam HPLC dapat mendeteksi kadar dalam jumlah nanogram (10-9 gram) dari bermacam-macam zat.
p.      Detektor- detektor Fluoresensi dan Elektrokimia dapat mendeteksi jumlah sampai picogram (10-12 gram). Detektor-detektor seperti Spektrofotometer Massa, Indeks Refraksi, Radiometri, dll, dapat juga digunakan dalam HPLC
q.      Kolom yang dapat digunakan kembali : Berbeda dengan kolom kromatografi klasik, kolom HPLC dapat digunakan kembali (reusable) . Banyak analisis yang bisa dilakukan dengan kolom yang sama sebelum dari jenis sampel yang diinjeksi, kebersihan dari solven dan jenis solven yang digunakan
r.        Ideal untuk zat bermolekul besar dan berionik : zat – zat yang tidak bisa dianalisis dengan KG karena volatilitas rendah , biasanya diderivatisasi untuk menganalisis psesies ionik. HPLC dengan tipe eksklusi dan penukar ion ideal sekali untuk mengalissis zat – zat tersebut.
s.       Mudah rekoveri sampel : Umumnya setektor yang digunakan dalam HPLC tidak menyebabkan destruktif (kerusakan) pada komponen sampel yang diperiksa, oleh karena itu komponen sampel tersebut dapat dengan mudah dikumpulkan setelah melewati detector.
t.        Solvennya dapat dihilangkan dengan menguapkan ksecuali untuk kromatografi penukar ion memerlukan prosedur khusus.
Sedangkan kekurangannya adalah:
a.       Larutan harus dicari fase diamnya terlebih dahulu
b.      Hanya bisa digunakan untuk asam organic
c.       Harus mengetahui kombinasi yang optimum antara pelarut, analit, dan gradient elusi
d.      Harganya mahal sehingga penggunaannya dalam lingkup penelitian yang terbatas













BAB III
PEMBAHASAN
A.    Penerapan HPLC Dalam Analisis Senyawa (Obat) Dalam Campuran
HPLC sering digunakan antara lain untuk menetapkan kadar senyawa aktif pada obat, produk hasil samping proses sintesis, atau produk- produk degradasi dalam sediaan farmasi. Keterbatasan metode HPLC ini adalah untuk identifikasi senyawa, kecuali jika HPLC dihubungkan dengan spektometer massa (MS). Keterbatasan lainnya adalah sampel sangat kompleks maka resolusi yang baik sulit diperoleh.
Penggunaan KCKT dalam bidang farmasi
Metode KCKT merupakan metode yang sangat populer untuk menetapkan kadar senyawa obat baik dalam bentuk sediaan atau dalam sampel hayati .Hal ini disebabkan KCKT merupakan metode yang memberikan sensitifitas  dan spesifitas yang tinggi. Berikut ini adalah beberapa contoh penggunaan KCKT untuk analisis beberapa sediaan farmasi :
Obat (sediaan)
Fase diam
Fase gerak
Detektor
Adriamisin (serum)
C18
Asetonitril-asam fosfat 0,01 N ph 2,3 (50:50)
Fluoresen
EK : 465 nm
EM : 580 nm
Aktinomisin (Serbuk)
C18
CH3CN-H2O (1:1)
Elektrometer
Allopurinol (tablet)
C18; 4 x 30 cm
KH2PO4 0,05M; 1,5 ml/menit
UV 254 nm

1. Parasetamol:
§  Nama Kimia        : 4- Hidroksiasetanilida
§  Rumus Molekul   : C8H9NO2
§  Berat Molekul      : 151,16
§  Pemerian              : serbuk, putih, tidak berbau, rasa sedikit pahit.
§  Kelarutan             : larut dalam air mendidih dan dalam natrium hidroksida 1 N, mudah larut dalam etanol. (Depkes RI, 1995).
Parasetamol atau N-asetil-p-aminofenol atau asetaminofen merupakan derivat para-amino fenol yang berkhasiat sebagai analgesik-antipiretik. Asetaminofen merupakan pengganti yang baik untuk analgesik dan antipiretik aspirin pada penderita dengan keluhan saluran cerna dan pada mereka dengan perpanjangan waktu perdarahan yang tidak menguntungkan. Asetaminofen merupakan analgetik dan antipiretis.
Parasetamol adalah senyawa yang memiliki sifat polar dan gugus kromofor yang dimilikinya menyebabkan senyawa ini dapat menyerap sinar UV. Karakteristik senyawa ini memungkinkan analisis dengan teknik HPLC menggunakan kolom nonpolar seperti C-18 dan fasa gerak polar seperti methanol/ air. Parasetamol diabsorbsi cepat dan sempurna melalui saluran cerna. Konsentrasi tertinggi plasma dicapai dalam waktu ½ jam dan masa paruh plasma antara 1-3 jam. Obat ini tersebar ke seluruh tubuh. Dalam plasma, 25% parasetamol terikat protein plasma. Parasetamol digunakan sebagai analgesic dan antipiretik.
Pengujian kadar parasetamol dalam obat menggunakan teknik HPLC , dalam proses analisisnya HPLC memiliki beberapa tahapan. Diawali dengan menginjeksikan sampel uji yaitu larutan obat yang sebelumnya telah disaring dengan membran PTFE ke dalam kolom HPLC dengan injektor khusus / syringe yang bervolume 20 µL, penyaringan sebelum penginjeksian ini dilakukan agar tidak terjadi penyumbatan didalam kolom dan menghilangkan gas dari pelarutnya. Sampel didorong cepat saat melalui kolom dengan bantuan pompa bertekanan tinggi. Di dalam kolom, komponen- komponen pada sampel dipisahkan berdasarkan pada perbedaan kekuatan interaksi solut terhadap fasa diamnya. Solut yang interaksinya kurang kuat akan keluar lebih lambat dari kolom daripada solut lainnya. Komponen akan keluar dari kolom dengan kecepatan yang berbeda dan terdeteksi oleh detektor. Detektor yang digunakan adalah detektor UV karena parasetamol merupakan senyawa organik yang dapat menyerap sinar UV. Pengujian ini menggunakan panjang gelombang 243 nm dengan mempertimbangkan panjang gelombang methanol yaitu 205 nm dan air yaitu 190 nm. Teknik yang dilakukan kali ini merupakan “reverse phase” atau fasa terbalik karena teknik ini menggunakan pelarut polar sebagai fasa gerak sedangkan fasa diamnya menggunakan pelarut non- polar. Penggunaan fasa gerak dan fasa diam yang berbeda kepolarannya ini bertujuan agar sampel uji tidak bereaksi dengan fasa diamnya saat melewati kolom HPLC. Sampel melewati kolom HPLC tentunya memiliki jangka waktu yang terukur dan juga menjadi parameter, waktu yang dibutuhkan sampel untuk melewati kolom ini disebut waktu retensi. Dalam pengujian parasetamol dalam obat, waktu retensi yang terukur adalah antara 2,19 hingga 2,2. Selanjutnya hasil analisis dengan HPLC ini menghasilkan suatu citra berupa kromatogram. Kromatogram ini merupakan grafik antara intensitas komponen yang dibawa oleh fasa gerak terhadap waktu retensi. Seharusnya tampilan kromatogram ini berupa grafik lurus, lancip, dan simetris. Tetapi data yang diperoleh pada percobaan ini sedikit melebar dan tidak simetris tentunya. Ini disebabkan antara lain oleh adanya difusi didalam kolom HPLC, difusi yang terjadi adalah difusi longitudinal dan difusi transfer massa. Difusi longitudinal itu sendiri disebabkan oleh penyebaran komponen yang tidak sama sedangkan difusi transfer massa disebabkan oleh kecepatan komponen yang tidak merata. Terdapat beberapa parameter pemisahan dalam HPLC, yaitu laju alir eluen yaitu sebesar 0,5 mL/ menit, ketebalan stasioner kolom C-18 yaitu 15 cm, ukuran partikel analit, dan laju difusi yang sudah disebutkan diatas. Parameter- parameter ini dapat menyebabkan kejanggalan dalam pencitraan kromatogram seperti pelebaran pada puncak. Adanya pelebaran puncak pada kromatogram mengindikasikan terjadinya overlapping analit yang belum terpisahkan dalam kolom. Semakin tinggi laju difusinya maka komponen dalam sampel akan semakin sulit dipisahkan secara efisien. Dari grafik luas area terhadap konsentrasi (ppm) dapat dihitung kadar parasetamol dalam sampel obat. Data yang diperoleh menunjukkan bahwa dari sampel obat sebanyak 12,5 mg diperoleh kadar parasetamol sebesar 83,444 % sedangkan dari massa rata-rata tablet obat sebesar 738,2 mg diperoleh massa parasetamol pada tiap tablet obat sebesar 615,9836 mg. Dapat disimpulkan bahwa kadar parasetamol dalam tablet obat adalah sebesar 615,98 mg per tabletnya.
2. Kafein
Rumus struktur :
§  Nama Kimia        : 1,3,7-Trimetil xantin
§  Rumus Molekul   : C8H10N4O2
§  Berat Molekul      : 194,19
§  Pemerian              : serbuk putih atau bentuk jarum mengkilat putih, biasanya menggumpal, tidak berbau, rasa pahit.
§  Kelarutan : Agak sukar larut dalam air, dalam etanol, mudah larut dalam kloroform, sukar larut dalam eter. (Depkes RI, 1995).
Dalam penetapan kandungan kafein digunakan sampel berupa minuman berkafein. HPLC yang digunakan adalh jenis HPLC Series 200 dengan detector 275 nm Perkin Elmer, Kolom : Supelcosil LC : 18, ( 25 cm X 4,6mm, 5 μm ). Menggunakan asam asetat 70% dan methanol 30% sebagai fasa gerak. Proses pengerjaan terdiri dari 2 tahap, yaitu tahap preparasi dan tahap injection ke HPLC.


ANALISIS KUANTITATIF
Metoda Persentase Tinggi / Lebar Puncak
Metoda ini disebut juga Metoda Normalisasi Internal. Untuk analisis kuantitatif diasumsikan bahwa lebar atau tinggi Puncak (Peak) sebanding (proportional) dengan kadar / konsentrasi zat yang menghasil puncak. Dalam metoda yang paling sederhana diukur lebar atau tinggi Puncak, yang kemudian dinormalisasi (ini berarti bahwa setiap lebar atau tinggi Puncak diekspresikan sebagai suatu persentase dari total). Hasil normalisasi dari lebar atau tinggi puncak memberikan komposisi dari campuran yang dianalisis, seperti contoh pada Tabel berikut:
No
Peak area
Kafein standar
Kafein dalam sampel
1
2601417,40
2216635,31
Berdasarkan data table diatas, maka kadar kafein dalam sampel ( teh poci ) dapat dianalisis dengan mengunakan persamaan :
  Cx     = Ax / Ap X Cp
= x 200 ppm
= 170,42 ppm
Maka dalam 1 mL sampel yang diuji terdapat 0,17042 mg kafein.
Ada dua masalah dengan pendekatan ini, yaitu:
Kita harus yakin bahwa kita telah menghitung semua komponen, yang tiap-tiap komponen muncul sebagai suatu puncak yang terpisah pada kromatogram. Komponen-komponen dapat berkoelusi, atau ditahan di dalam kolom, atau, terelusi tanpa terdeteksi. Kita harus mengasumsi bahwa kita memperoleh respons detektor yang sama untuk setiap komponen
Untuk mengatasi kesulitan ini, maka kalibrasi detektor diperlukan.
Kafein berkhasiat menstimulasi SSP, dengan efek menghilangkan rasa letih, lapar dan mengantuk, juga daya konsentrasi dan kecepatan reaksi dipertinggi, prestasi otak dan suasana jiwa diperbaiki. Kofein juga memperkuat kontraksi jantung, vasodilatasi perifer dan diuretis. Kofein digunakan sebagai penyegar. Zat ini sering dikombinasikan dengan Parasetamol atau asetosal untuk memperkuat efek analgetisnya.
Kafein dosis sedang menyebabkan insomnia, ansietas dan agitasi. Dosis tinggi diperlukan untuk memperlihatkan toksisitas berupa muntah dan konvulsi. Dosis letal sekitar 10 g (kira-kira 100 cangkir kopi) yang menimbulkan aritmia jantung. Kematian karena kafein sangat tidak mungkin. Letargi, iritabel dan sakit kepala terjadi pada pengguna yang secara rutin minumg lebih dari 600 mg kopi per hari ( sekitar 6 cangkir kopi per hari) dan mendadak berhenti. (Mycek, 2001).







BAB III
PENUTUP
3.1 Kesimpulan
a. Komponen utama dari HPLC yaitu, pompa, injector, elusi gradient, kolom, detector, pengolahan data.
b. Prinsip dasar HPLC (High Performance Liquid Chromatografi) adalah pemisahan senyawa-senyawa berdasarkan kepolaran, dimana terdapat fase mobile (gerak) dan fase stasioner (diam). HPLC sering digunakan antara lain untuk menetapkan kadar senyawa aktif pada obat, produk hasil samping proses sintesis, atau produk- produk degradasi dalam sediaan farmasi. Contohnya adalah menganalisis parasetamol dan kafein dalam suatu campuran.
c. HPLC sebagai suatu metode pemisahan memiliki beberapa keuntungan yaitu menghasilkan pemisahan yang sangat cepat, dapat memisahkan zat-zat yang tidak mudah menguap ataupun tak tahan panas, banyak pilihan fasa geraknya, mudah untuk mendapatkan kembali cuplikan, karena detector pada KCKT tidak merusak komponen zat yang dianalisis, dan dapat dirangkai dengan instrumen lain untuk meningkatkan efisiensi pemisahan. Sedangkan kekurangannya adalah larutan harus dicari fase diamnya terlebih dahulu, hanya bisa digunakan untuk asam organic, harus mengetahui kombinasi yang optimum antara pelarut, analit, dan gradient elusi, harganya mahal sehingga penggunaannya dalam lingkup penelitian yang terbatas
3.2 Saran
Penulis berharap kromatografi gas yang telah disajikan dalam bab isi dapat dijadikan referensi ataupun tambahan wawasan bagi pembaca sehingga dapat membedakannya dan dapat menerapkannya secara tepat dengan tujuan memajukan pendidikan di Indonesia.




DAFTAR PUSTAKA
Ahmad, M., dan Suherman 1995. Analisis Instrumental. Airlangga University Press. Surabaya.
Ahmad, M., dan Suherman. 1991. Kromatografi Cair Kinerja Tinggi. Airlangga University Press. Surabaya.
Bahti. 1998. Teknik Pemisahan Kimia dan Fisika. Universitas Padjajaran. Bandung.
Bassett, J., R.C. Denney, G.H. Jeffery, dan J. Mendham, 1994, Kimia Analisis Kuantitatif Anorganik, Penerbit Buku Kedokteran EGC, Jakarta.
Day, R.A dan Underwood, A.L., 2002, Analisis Kimia Kuantitatif, Erlangga, Jakarta.
Khopkar, S.M., 2008, Konsep Dasar Kimia Analitik, UI Press, Jakarta.
Putra,Effendy D. L., 2004. Kromatografi Cair Kinerja Tinggi Dalam Bidang Farmasi. Jurusan Farmasi Fakultas Dan Ilmu Pengetahuan Alam Universitas Sumatera Utara :3
Sudjadi, 1986. Metode Pemisahan. Kanisius. Yogyakarta.

Total Tayangan Laman